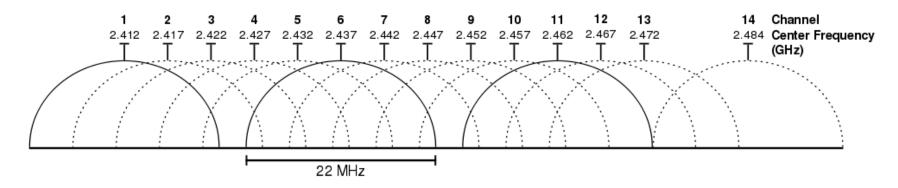
WIFI

Стандарты беспроводных локальных сетей

Стандарт	Опубликован	Частота, GHz	Скорость, Мбит/с	Метод расширения спектра	Дальность (в помещении / снаружи), м
802.11 legacy	1997	2.4	2	DSSS, FHSS	20 / 100
802.11a	1999	5	54	OFDM	35 / 120
802.11b	1999	2.4	11	DSSS	38 / 140
802.11g	2003	2.4	54	OFDM, DSSS	38 / 140
802.11n	2009	2.4 и/или 5	450	OFDM	70 / 250

Комитет 802.11 был создан в 1990 году. В 1991 году NCR/AT&T разработала технологию Wave Lan. В 1999 был создана международная организация Wireless Ethernet Compatibility Alliance (WECA).

802.11a


Наименование параметра	Значение параметра	Метод модуляции
Диапазон частот, МГц	5150-5350; 5650-6425	
Метод доступа к среде	Множественный доступ с контролем несущей и предотвращением коллизий	
Метод расширения спектра	OFDM	
Частотный разнос каналов, МГц	20	
Количество поднесущих в канале	52	
	6; 9	BPSK
Скорости передачи данных по	12; 18	QPSK
радиоканалу, Мбит/с	24; 36	16QAM
	48; 54; 108	64QAM
Максимальная мощность излучения передатчика в полосе частот: 5150-5250; 5250-5350 МГц	Не более 20 дБм (100 мВт)	
Максимальная мощность излучения передатчика в полосе частот: 5650-5725; 5725-5825; 5825-6425 МГц	Не более 30 дБм (1 000 мВт)	

Для предотвращения создания помех системам слежения за спутниками связи в Европе используются протоколы Dynamic Frequency Selection (DFS) и Transmit Power Control (TPC)

802.11b

Наименование параметра	Значение параметра	Метод кодирования и модуляции
Диапазон частот, МГц	2400-2483,5	
Метод расширения спектра	DSSS	
План частот	2412+5(n-1), n = 1, 213	
	1	Код Баркера, DBPSK
	2	Код Баркера, DQPSK
Скорости передачи данных по радиоканалу,	5,5	CCK, DQPSK PBCC, DQPSK
Мбит/с	11	CCK, DQPSK PBCC, DQPSK
	22	PBCC, DQPSK
Максимальная мощность излучения передатчика, дБм	не более 20 (100 мВт)	

Частотный план диапазона 2.4GHz

- При ширине полосы 22 MHz и шаге каналов 5 MHz можно использовать только каждый 4 или 5 канал.
- В России и США: 1, 6 и 11.
- В Европе: 1, 5, 9,13 или 1, 6, 11.
- Канал 14 был введён в Японии и разрешен к использованию в некоторых других странах.

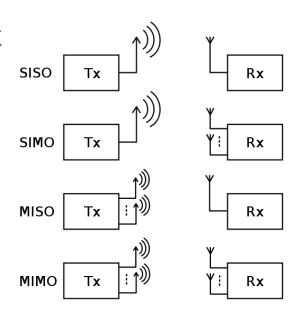
802.11g

Наименование параметра	Значение параметра	
Диапазон частот, МГц	2400-2483,5	
План частот (центральные частоты каналов, МГц)	2412+5(n-1), n = 1, 13	
Методы расширения спектра	DSSS, OFDM	
Скорости передачи данных по радиоканалу и модуляции, Мбит/с	1; 2; 5,5; 6; 9; 11; 12; 18; 22; 24; 33; 36; 48; 54; расширения: 108, 140	
Методы кодирования	Код Баркера, ССК, РВСС, ОFDM, ССК-ОFDM	
Методы модуляции	DBPSK, DQPSK, BPSK, QPSK, 16-QAM, 64-QAM	
Максимальная мощность излучения передатчика	Не более 24 дБм (250 мВт)	

Расширения стандарта 802.11g

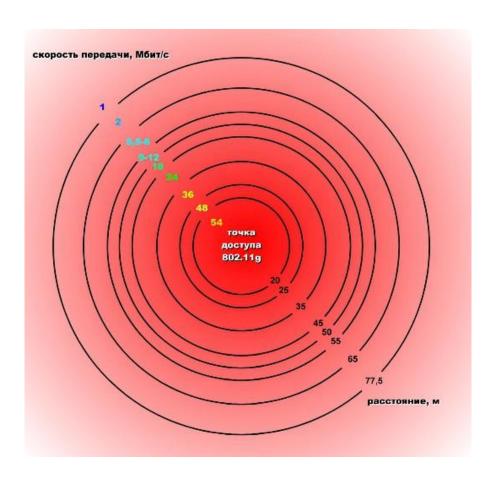
- Общие подходы
 - Сжатие данных
 - Пакетная передача данных
- Atheros SuperG (108G, Xtreme G, 108 Mbit/s 802.11g)
 - Используется связывание 2 каналов (54+54=108 Мбит/с)
 - Использует только 6-ой канал
 - Статический режим работы используется когда всё оборудование поддерживает SuperG
 - Динамический режим работы позволяет совмещать разное оборужование
 - Возможна работа SuperG через 1 канал
- Connexant Nitro MX Xtreme
 - Декларируется скорость до 140 Мбит/с
 - DirectLink: передача данных между устройствами минуя AP но под её управлением
- 125 High Speed Mode (g+, G Plus, Turbo G, SpeedBooster, 125 M)

802.11n


Наименование	е параметра	Значение параметра		
Диапазон частот, МГц		2400-2483,5 и/или 5150-5350, 5650-6425		
Метод доступа к среде		Множественный доступ с контролем несущей и предотвращением коллизий		
Число потоков MIMO, не менее		Базовая станция — 2		
		Абонентская станция — 1		
Число потоков MIMO, не более		4		
Метод расширения спектра		OFDM		
Частотный разнос каналов, МГц		20 и/или 40		
Количество поднесущих в канале		56 (при ширине канала 20 МГц)		
	2400-2483,5	Не более 24 дБм (250 мВт)		
Максимальная мощность передатчика, работающего в диапазоне, МГц	5150-5250, 5150-5250, 5250-5350	Не более 20 дБм (100 мВт)		
	5650-5725, 5725-5825	Не более 30 дБм (1000 мВт)		

Режимы работы оборудования:

- Режим предыдущих версий / Legacy: a, b, g без n
- Смешанный режим / Mixed: a, b, g и частичная поддержка n
- Высокоскоростной режим / High Throughput (HT): только n


MIMO

- Использование нескольких передающих антенн
 - Формирование диаграммы направленности передатчика
 - Пространственно-временные блоковые коды
 - Субсимвольный временной сдвиг
 - Выбор антенны
- Использование информации от нескольких приёмных антенн
 - Сложение принимаемых сигналов для повышения коэффициента сигнал/шум
- Одновременное применение нескольких передающих и принимающих антенн
 - Пространственное мультиплексирование

Скорость передачи в сетях WiFi

Зависимость теоретической скорости передачи в сети WiFi от расстояния на открытом пространстве (по данным фирмы TrendNet).

Pаспространение сигнала WiFi в реальных условиях

Потеря эффективности сигнала WiFi (по данным фирмы Zyxel)

Препятствие	Дополнительные потери (дБ)	Эффективное расстояние (%)	
Открытое пространство	0	100	
Окно без тонировки	3	70	
Окно с тонировкой	5-8	50	
Деревянная стена	10	30	
Межкомнатная стена 15 см	15-20	15	
Несущая стена 30 см	20-25	10	
Бетонный пол/потолок	15-25	10-15	
Монолитное ж.б.	20-25	10	
перекрытие			

Кухня

Комната

12,15 x 10,13 m

Реальное распределение мощности роутера WiFi в 3-х комнатной квартире. По статье Ю. Ревич, dgl.ru

Режимы работы сетей WiFi

- Infrastructure
 - Сеть управляется точкой доступа
- Ad hoc
 - Не используется точка доступа
 - Для подключения достаточно знать SSID и номер канала
 - Нельзя соединить мостом с другими сетями
 - Может быть снижена скорость работы

Формат кадра 802.11

- Frame control
 - Protocol Version (2 бита): Версия протокола, сейчас 0
 - Туре (2 бита): Тип кадра: Control, Data или Management
 - Sub Type (4 бита): Уточнение типа кадра.
 - ToDS и FromDS (по 1 биту): Направление передачи пакета для пакетов данных.
 - More Fragments (1 бит): Используется при фрагментации.
 - Retry (1 бит): Устанавливается для кадров, посылаемых повторно.
 - Power Management (1 бит): Устанавливается в 1 если отправитель перейдёт в режим энергосбережения после передачи.
 - More Data (1 бит): Сообщает что есть ещё пакеты и не надо уходить в режим энергосбережения.
 - WEP (1 бит): Устанавливается в 1 если пакет не был зашифрован или расшифрован.
 - Order (1 бит): Устанавливается в 1 при передаче кадров в режиме строгого порядка.
- Duration ID
 - Duration,
 - Contention-Free Period (CFP)
 - Association ID (AID).
- МАС адреса.
- Sequence Control
 - Номер фрагмента (4 бита)
 - Последовательный номер кадра (12 бит)
- Quality of Service (2 байта) расширение <u>802.11е</u>.
- Данные от 0 до 2304 байт
- Frame Check Sequence (FCS) (4 байта) Контрольная сумма

Типы кадров 802.11

- Кадры управления / Control frames
 - Acknowledgement (ACK) frame.
 - Request to Send (RTS) frame.
 - Request to Request to Send (RRTS) frame.
 - Clear to Send (CTS) frame.

 Кадры данных / Data frame используются для передачи данных протоколов более высокого уровня

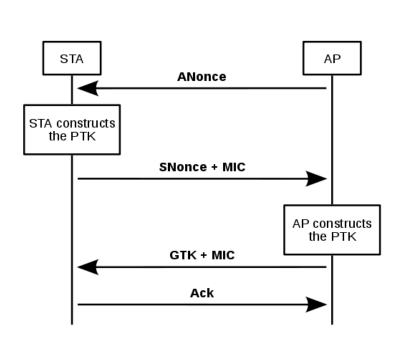
Типы кадров 802.11

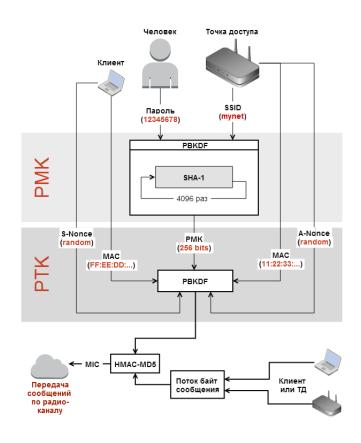
- Кадры обслуживания / Management frames
 - Authentication frame: используются для аутентификации станции и AP.
 - При открытой аутентификации станция посылает запрос AP, AP отвечает приёмом или отклонением
 - При использовании ключей станция посылает запрос, AP отвечает кадром со случайными данными, станция шифрует эти данные и передает обратно AP, AP сверяет зашифрованные данные со своим вариантом.
 - Association request frame: Запрос станции о подключении к сети.
 - Association response frame: Ответ на запрос о подключении.
 - Beacon frame: Периодически посылается AP, содержит SSID и другие данные.
 - Deauthentication frame: Посылается станцией, которая хочет закрыть соединение.
 - Disassociation frame: Посылается станцией, которая хочет закрыть соединение.
 - Probe request frame: Запрос информации одной станции о другой (поддерживаемые скорости и т.п.).
 - Probe response frame: Ответ на запрос.
 - Reassociation request frame: Запрос на переход к новой АР.
 - Reassociation response frame: Подтверждение перехода к новой АР.

Wired Equivalent Privacy (WEP)

- WEP Исходный вариант шифрования пакетов WiFi
 - Использовал RC4 для шифрования и CRC32 для контроля ошибок или вставки посторонних пакетов
 - Ключи RC4 не должны повторяться при передаче, поэтому они дополнялись 24-битной псеводслучайной последовательностью Initialization Vector / IV
 - Последовательность оказалось слишком короткой, что позволило дешифровать ключи

WiFi Proteced Access (WPA)

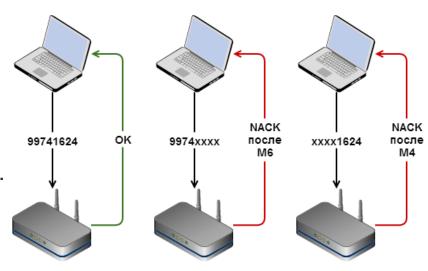

- Temporal Key Integrity Protocol (TKIP)
 - Использована более сложная функция смешивания ключа и IV
 - Использована более сложная контрольная сумма
 - В данный момент тоже сломан
- Wi-Fi Protected Access (WPA)
 - В исходном варианте использовала ТКІР
 - WPA-Personal (WPA-PSK): использует ключ, имеющийся у AP и станции
 - WPA-Enterprise (WPA-802.1X, WPA): использует протокол EAP и сервер аутентификации
- Wi-Fi Protected Access II (WPA2)
 - ССМР протокол шифрования на основе AES


Extensible Authentication Protocol (EAP)

- Стандарт, определяющий инфраструктуру аутентификации, определен в RFC 3748 и RFC 5247
- В данный момент определено порядка 40 методов аутентификации
- Требования к методам EAP применяемых в беспроводных сетях определены в RFC 4017
- EAP-TLS [RFC 2716]
 - Аутентификация на основе ассиметричной криптографии с применением инфраструктуры публичных ключей
- EAP-TTLS [RFC 5281], Расширение EAP-TLS, клиенту не обязательно иметь подписанный публичный ключ
- PEAP
 - Передача ЕАР через зашифрованный канал
- EAP-SIM [RFC 4186] Аутентификация с помощью SIM-карты

Обмен ключами

- Pairwise Master Key (РМК) разделяемый секретный ключ = hash(пароль, ESSID)
- Pairwise Transit Key (PTK)=hash(PMK Anonce Snonce APmac STAmac)



WPS (QSS)

Технология предназначенная для упрощения подключения к точке доступа.

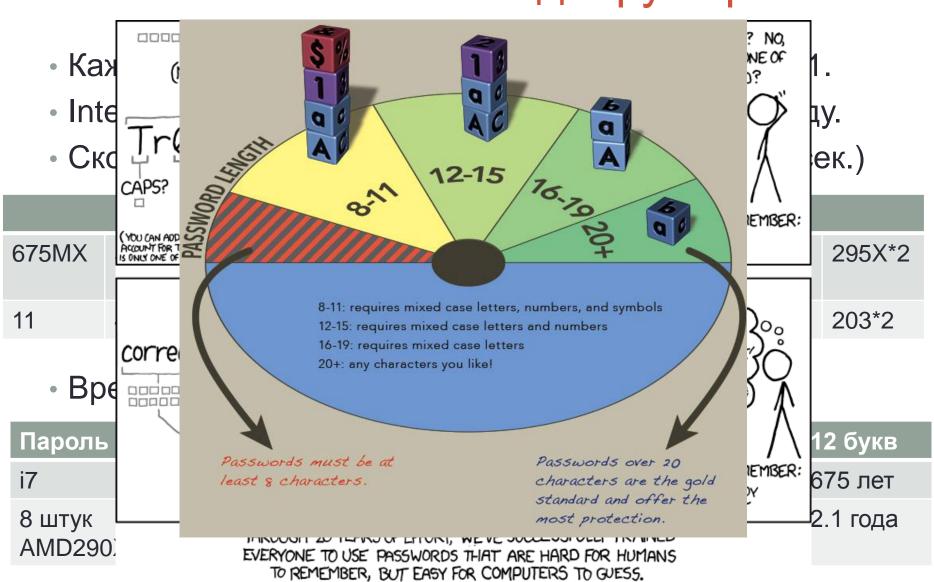
- WPS позволяет подключиться по 8-символьному коду, состоящему из цифр (PIN).
- Из-за ошибки в стандарте для подключения достаточно угадать 4 цифры..
 - Достаточно10000 попыток.
 - В секунду можно отправлять 10-50 запросов.
 - Ключ можно подобрать за 3 15 часов.
- В некоторых устройствах есть ограничение на число попыток входа.
 - Хорошо, если есть на половине моделей роутеров.
 - Даже если оно есть, PIN можно подобрать за неделю

Сокрытие имени сети (ESSID)

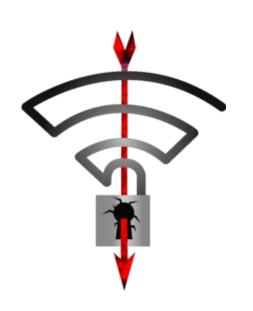
- Для подключения к сети надо указывать имя сети (ESSID).
- Во время работы для идентификации сети используется MAC-адрес точки доступа (BSSID).
- АР «открытой сети» передаёт маячок со своим ESSID 10 раз в секунду.
- АР «закрытой сети» передаёт маячки с пустым ESSID (или не передаёт ничего, пока нет клиентов).
- При подключении клиент в любом случае передаёт ESSID.
 - Можно заставить клиента переподключиться, отправив специально сформированный кадр.
 - Можно просто подождать подключения клиента.

ESSID и автоподключение к сети

- Передача ESSID нужна, чтобы работала функция «всегда подключаться к этой сети»:
 - АР передаёт маячки с именем сети;
 - клиентский компьютер видит известную ему сеть и подключается к ней.
- Авотподключение к сети может использоваться для перехвата данных:
 - злоумышленник передаёт со своей АР маячок, с именем известной компьютеру/телефону сети (может передавать много разных имён);
 - компьютер/телефон автоматически подключается к АР злоумышленника;
 - злоумышленник передаёт траффик в интернет, получая к нему доступ.

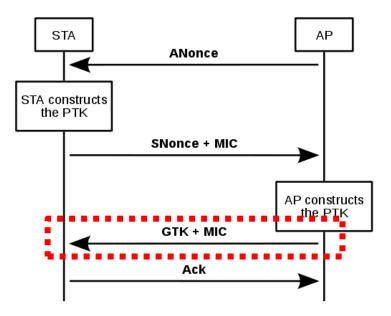

• Выводы:

- Не стоит включать автоподключение к общественным сетям (все злоумышленники знают, как зовут сети Дом.ru, Макдональдса и т.п.).
- Если Вы опасаетесь адресных атак, автоподключение не стоит включать вообще.


Атака на WPA перебором

- Математически доказано, что корректно выполненный 4-х фазный хэндшейк WPA позволяет сторонам безопасно проверить знание пароля друг другом и установить ключ шифрования сессии.
- Алгоритм «взлома» сети WPA:
 - 1. вычислить главный ключ сети (РМК):
 - 1. имя сети ESSID известно;
 - 2. пароль пробовать все по очереди (из словаря, и т.п.)
 - 2. вычислить РТК, нужны:
 - 1. РМК, МАС-адреса известны;
 - 2. попсе-строки необходимо перехватить начало соединения;
 - 3. вычислить и сравнить MIC, если не совпали goto 1.
- Каждая итерация требует 8192 вычислений SHA-1, который в 3 раза медленнее MD5.
- Вычисленный ключ даст возможность дешифровать данные только конкретной сессии конкретного клиента.

Устойчивость WPA к подбору пароля


Key Reinstallation Attack KRACK

- В 2016 году Mathy Vanhoef обнаружил подозрительную строку в WiFi драйверах OpenBSD.
- В июле 2017 года о уязвимости были предупреждены производители ОС и оборудования.
- 16 октября 2017 года информация об уязвимости была опубликована для широкой публики.
- Уязвимость позволяет дешифровать данные, передаваемые через WiFi
- В случае использования методов шифрования ТКІР или GCMP уязвимость позволяет вставлять произвольные данные в соединение.

Как работает KRACK

- Так как пакеты могут теряться, точка доступа по стандарту может отправлять третье сообщение несколько раз.
- Получив повторное сообщение клиент заново переустанавливает пароль и сбрасывает счётчики отправленных и принятых данных (nonce).
- Атакующий может подслушать и воспроизвести это сообщение, что приведёт к повторному использованию клиентом одного и того же пароля с одними и теми же значениями nonce на новых данных.
- Это делает возможным дешифровку ключа сессии по пакетам с известными данными (или, например, с английским текстом).
- Не позволяет восстановить пароль.

KRACK на Android и Linux

- Примечание в стандарте WiFi рекомендует стирать в памяти пароль, после того, как он был использован.
 - Это вообще-то была хорошая идея.
- Библиотека wpa_supplicant версии 2.4 и выше перезаписывает пароль нулями.
 - Используется Linux и Android версии 6 и выше.
- Поэтому, при проведении атаки KRACK эта библиотека устанавливает для соединения пароль, состоящий из одних нулей.
- Перехват и подделка трафика становятся элементарными.

Что позволяет KRACK

		Дешифровка ¹	Подделка ²	Воспроизведение ³
4-way	TKIP	клиент → АР	клиент → АР	АР → клиент
	AES-CCMP	клиент → АР		АР → клиент
	GCMP	клиент → АР	клиент → АР	АР → клиент
Fast BSS Transition	TKIP	АР → клиент	АР → клиент	клиент → АР
	AES-CCMP	АР → клиент		клиент → АР
	GCMP	АР → клиент	АР ≒ клиент	клиент → АР
Group	Любой	АР → клиент		АР → клиент

- 1 позволяет перехватывать и вставлять данные в ТСР соединения, например, вставлять злонамеренные скрипты в web-страницы, передаваемые по нешифрованным (http) соединениям.
- ² позволяет поместить в сеть пакеты, адресованные любым другим устройствам.
- ³ повторная отправка широковещательных пакетов. Можно использовать для подрыва работоспособности TLS, DNSSEC, Kerberos, Bitcoin....

Защита от KRACK

- Протокол WPA2 [может быть] изменён без потери обратной совместимости.
- Что надо исправлять:
 - Точки доступа, которые поддерживают Fast BSS Transition handshake (802.11r) в основном точки доступа для корпоративного использования.
 - Точки доступа, которые могут работать в режиме WiFi клиента (ретрансляторы).
 - Всё оборудование, выступающее в роли WiFi клиентов.
- Можно исправить точку доступа так, чтобы она не допускала атаку на незащищенных клиентов, пока они подключены к ней.